\mathbf{P}	$0.7327(1)$	$-0.11240(4)$	$0.8548(1)$	$3.99(4)$
$\mathrm{O}(1)$	$0.7209(3)$	$-0.2022(1)$	$0.8647(3)$	$5.2(1)$
$\mathrm{O}(2)$	$0.5536(3)$	$-0.1054(1)$	$0.7429(3)$	$5.7(1)$
$\mathrm{N}(1)$	$0.8518(3)$	$0.0886(1)$	$0.8885(2)$	$3.3(1)$
$\mathrm{N}(2)$	$0.5255(4)$	$0.2240(2)$	$0.9188(3)$	$4.9(1)$
$\mathrm{C}(1)$	$0.7336(4)$	$0.1254(2)$	$0.9302(3)$	$3.2(1)$
$\mathrm{C}(2)$	$0.6419(4)$	$0.1877(2)$	$0.8667(3)$	$3.6(1)$
$\mathrm{C}(3)$	$0.6773(5)$	$0.2130(2)$	$0.7521(4)$	$4.8(2)$
$\mathrm{C}(4)$	$0.7946(5)$	$0.1750(2)$	$0.7068(4)$	$5.1(2)$
$\mathrm{C}(5)$	$0.8806(4)$	$0.1135(2)$	$0.7756(3)$	$4.2(1)$
$\mathrm{C}(6)$	$0.8567(5)$	$-0.2455(2)$	$0.9560(5)$	$6.0(2)$
$\mathrm{C}(7)$	$0.8140(6)$	$-0.3272(2)$	$0.9377(5)$	$6.6(2)$
$\mathrm{C}(8)$	$0.4778(6)$	$-0.0334(3)$	$0.6971(5)$	$7.4(2)$
$\mathrm{C}(9)$	$0.3026(7)$	$-0.0426(3)$	$0.6156(6)$	$9.1(3)$

Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ni}-\mathrm{N}(1)$	$2.103(3)$	$\mathrm{Ni}-\mathrm{N}\left(1^{\mathrm{i}}\right)$	$2.103(3)$
$\mathrm{Ni}-\mathrm{S}(1)$	$2.491(2)$	$\mathrm{Ni}-\mathrm{S}\left(1^{\mathrm{i}}\right)$	$2.491(2)$
$\mathrm{Ni}-\mathrm{S}(2)$	$2.505(3)$	$\mathrm{Ni}-\mathrm{S}\left(2^{\mathrm{i}}\right)$	$2.505(3)$
$\mathrm{P}-\mathrm{S}(1)$	$1.977(2)$	$\mathrm{P}-\mathrm{O}(2)$	$1.582(3)$
$\mathrm{O}(1)-\mathrm{C}(6)$	$1.446(5)$	$\mathrm{O}(2)-\mathrm{C}(8)$	$1.430(5)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}\left(1^{\mathrm{i}}\right)$	180.00	$\mathrm{~S}(1)-\mathrm{Ni}-\mathrm{S}(2)$	$81.58(7)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{S}(1)$	$89.71(9)$	$\mathrm{N}\left(1^{1}\right)-\mathrm{Ni}-\mathrm{S}(2)$	$90.1(1)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{S}(2)$	$89.9(1)$	$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{N}\left(1^{i^{\prime}}\right)$	$90.29(9)$
$\mathrm{S}(1)-\mathrm{P}-\mathrm{S}(2)$	$111.52(8)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$93.8(2)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{S}(1)$	$112.2(1)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{S}(2)$	$112.2(1)$

Symmetry code: (i) $2-x,-y, 2-z$.
Data were collected using CONTROL software (Molecular Structure Corporation, 1988). The structure was solved by direct methods using MITHRIL (Gilmore, 1983); the heavy atom Ni was located in an E map and the remaining nonH atoms were located using DIRDIF (Beurskens, 1984). H atoms were placed in geometrically calculated positions (C $\mathrm{H}=0.95 \AA$) and were not included in the refinement. The structure was refined by full-matrix least-squares techniques with anisotropic displacement parameters for all non-H atoms. Calculations were performed on a VAX3100 computer using the TEXSAN (Molecular Structure Corporation, 1985) program package.

This work was supported by a grant for a Major Project from the State Science and Technology Commission, and the National Science Foundation of China, as well as the State Key Laboratory of Tribology of Tsinghua University.

[^0]
References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/I. Crystallography Laboratory, Toernooiveld, 6526 ED Nijmegen, The Netherlands.
Gilmore, C. J. (1983). MITHRIL. Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Department of Chemistry, Univ. of Glasgow, Scotland
Huang, X.-Y., Xiong, R.-G., Dong, J.-X. \& You, X.-Z. (1995). Acta Cryst. C51, 598-600

Liu, S.-X., Lin, C.-C., Yu, Y.-P., Zhu, D.-L., Xu, Z., Gou, S.-H. \& You, X.-Z. (1991). Acta Cryst. C47, 43-45.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA
Ooi, S. \& Fernando, Q. (1967). Inorg. Chem. 6, 1558-1562.
You, X.-Z., Xiong, R.-G., Dong, J.-X. \& Huang, X.-Y. (1994). Polyhedron, 13, 2763-2766.

Acta Cryst. (1995). C51, 2263-2265

The Adduct of $\operatorname{Bis}\left(O, O^{\prime}\right.$-dibutyl dithiophosphato)nickel(II) with Isoquinoline

Ren-Gen Xiong and Xiao-Zeng You*

Coordination Chemistry Institute and State Key
Laboratory of Coordination Chemistry, Nanjing
University, Nanjing 210008, People's Republic of China

Xiao-Ying Huang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou 350002, People's Republic of China

(Received 19 September 1994; accepted 9 May 1995)

Abstract

In the title compound, $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, the metal atom is coordinated in a distorted octahedral arrangement with the central Ni atom lying in the plane formed by the four S atoms and with the two isoquinoline moieties in trans positions. The $\mathrm{Ni}-\mathrm{S}$ bond distances are 2.491 (3) and 2.498 (2) \AA and the $\mathrm{Ni}-\mathrm{N}$ distances are 2.103 (4) \AA.

Comment

In recent years, adducts of nickel(II) dialkyl dithiophosphate with neutral nitrogen bases have received increasing attention, partly because of the reactivity of a variety of nitrogen bases with nickel(II) dialkyl dithiophosphate in solution (Liu et al., 1991; You, Xiong, Dong \& Huang, 1994; You et al., 1991). Furthermore, the amines in lubricating oil have a great influence on the properties of metal dialkyl dithiophosphate additives (Shiomi, Tokashiki, Tomizawa
\& Kuribayashi, 1989). It is interesting to investigate further the interaction between metal dialkyl dithiophosphates and amines. We report here the crystal structure of $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (I), which displays octahedral geometry (Liu, Lin, Xu, Yu \& You, 1987).

(I)

A perspective view of the title adduct with the atomic numbering scheme is shown in Fig. 1. The Ni atom lies on a crystallographic centre of symmetry and has distorted octahedral coordination from two isoquinoline ligands and two O, O^{\prime}-dibutyl dithiophosphate bidentate ligands. The isoquinoline ring is almost planar; the mean deviation from the best plane is $0.0224 \AA$. The plane through $\mathrm{Ni}, \mathrm{S}_{2}$ and P is almost perpendicular to the plane of the isoquinoline ring, forming a dihedral angle of 89.05°. The $\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(2)$ angle is $81.53(8)^{\circ}$, which is in reasonable agreement with that of $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2} \mathrm{py}_{2}\right.$] [81.7(1) ${ }^{\circ}$; Ooi \& Fernando, 1967] and that of $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2} \mathrm{py}_{2}\right]$ [81.53(8) ${ }^{\circ}$; Liu et al., 1987]. Similarly, the Ni$\mathrm{N} \quad[2.103(4) \AA$] and $\mathrm{Ni}-\mathrm{S}$ [2.491 (3)-2.498 (2) \AA] bond lengths are basically consistent with those of $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2} \mathrm{Py}_{2}\right] \quad[2.11(1)$ and $2.49(1)-$ $2.50(1) \AA$] and $\left[\mathrm{Ni}\left\{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2} \mathrm{py}_{2}\right.$] [2.116 (4) and 2.486 (1)-2.511 (1) A]. The terminal C atom, C24, of one of the butyl groups was found to be disordered.

Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms except for the C atoms of the butyl chains which are represented by spheres of arbitrary radii. H atoms are omitted for clarity.

Experimental

[$\left.\mathrm{Ni}\left\{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\right]$ was dissolved in ethanol and excess isoquinoline was added until the colour of the solution changed from purple to green. Green column crystals of the title adduct were obtained by evaporation at room temperature for two weeks.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=799.67$
Monoclinic
$P 2_{1} / c$
$a=6.860(8) \AA$
$b=18.938$ (2) \AA
$c=16.224$ (4) \AA
$\beta=92.78$ (7) ${ }^{\circ}$
$V=2105(2) \AA^{3}$
$Z=2$
$D_{x}=1.26 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=10.20-11.70^{\circ}$
$\mu=0.761 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Column
$0.42 \times 0.18 \times 0.12 \mathrm{~mm}$
Green

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.76, T_{\text {max }}=1.00$
4171 measured reflections

$$
\begin{aligned}
& R_{\text {int }}=0.031 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 8 \\
& k=-22 \rightarrow 0 \\
& l=-19 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \text { monitored every } 300 \\
& \quad \text { reflections }
\end{aligned}
$$

3832 independent reflections 2341 observed reflections $[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.049$
$w R=0.058$
$S=1.27$
2341 reflections
213 parameters
H-atom parameters not refined
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.15$ 。
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
B_{\text {iso }} \text { for C24 and C24'; } B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j} \text { for others. }
$$

	x	y	z	$B_{\text {eq }} / B_{\text {iso }}$ Ni
$1 / 2$	0	0	$3.76(4)$	
$\mathrm{S}(1)$	$0.3851(2)$	$0.07818(7)$	$0.11175(8)$	$5.24(6)$
$\mathrm{S}(2)$	$0.8159(2)$	$0.05903(7)$	$0.03866(8)$	$5.12(6)$
P	$0.6598(2)$	$0.10935(7)$	$0.11977(9)$	$5.36(7)$
$\mathrm{O}(1)$	$0.6800(6)$	$0.1923(2)$	$0.1137(3)$	$7.1(2)$
$\mathrm{O}(2)$	$0.7533(6)$	$0.1042(2)$	$0.2109(2)$	$7.7(2)$
N	$0.4374(5)$	$0.0802(2)$	$-0.0870(2)$	$4.1(2)$
$\mathrm{C}(1)$	$0.5698(7)$	$0.0994(3)$	$-0.1436(3)$	$4.8(2)$
$\mathrm{C}(2)$	$0.5339(7)$	$0.1522(3)$	$-0.1985(3)$	$5.5(3)$
$\mathrm{C}(3)$	$0.2689(6)$	$0.1133(2)$	$-0.0896(3)$	$4.4(2)$
$\mathrm{C}(4)$	$0.311(1)$	$0.2458(3)$	$-0.2560(4)$	$7.1(3)$
$\mathrm{C}(5)$	$0.136(1)$	$0.2771(3)$	$-0.2547(4)$	$8.3(4)$
$\mathrm{C}(6)$	$-0.0014(9)$	$0.2563(3)$	$-0.1994(5)$	$8.2(4)$
$\mathrm{C}(7)$	$0.0383(7)$	$0.2034(3)$	$-0.1454(4)$	$6.3(3)$

$\mathrm{C}(8)$	$0.2198(7)$	$0.1688(3)$	$-0.1442(3)$	$4.8(2)$
$\mathrm{C}(9)$	$0.3593(7)$	$0.1893(3)$	$-0.2012(3)$	$5.1(2)$
$\mathrm{C}(11)$	$0.636(2)$	$0.2291(4)$	$0.0402(6)$	$16.4(8)$
$\mathrm{C}(12)$	$0.622(3)$	$0.2978(6)$	$0.0390(8)$	$21(1)$
$\mathrm{C}(13)$	$0.552(4)$	$0.3362(8)$	$-0.034(1)$	$24(2)$
$\mathrm{C}(14)$	$0.433(6)$	$0.379(2)$	$-0.032(2)$	$42(4)$
$\mathrm{C}(21)$	$0.769(2)$	$0.0368(5)$	$0.2507(5)$	$14.5(7)$
$\mathrm{C}(22)$	$0.936(3)$	$0.0321(7)$	$0.307(1)$	$22(1)$
$\mathrm{C}(23)$	$1.023(3)$	$-0.043(2)$	$0.330(2)$	$29(2)$
$\mathrm{C}(24)$	$1.171(7)$	$-0.031(2)$	$0.358(3)$	$25(2)$
$\mathrm{C}\left(24^{\prime}\right)$	$0.897(7)$	$-0.049(3)$	$0.369(3)$	$23(2)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{N}$	$2.103(4)$	$\mathrm{Ni}-\mathrm{S}(1)$	$2.498(2)$
$\mathrm{Ni}-\mathrm{S}(2)$	$2.491(3)$	$\mathrm{P}-\mathrm{S}(1)$	$1.973(3)$
$\mathrm{P}-\mathrm{S}(2)$	$1.981(2)$	$\mathrm{P}-\mathrm{O}(1)$	$1.581(4)$
$\mathrm{P}-\mathrm{O}(2)$	$1.587(4)$	$\mathrm{N}-\mathrm{C}(1)$	$1.371(5)$
$\mathrm{N}-\mathrm{C}(3)$	$1.315(5)$	$\mathrm{O}(1)-\mathrm{C}(11)$	$1.40(1)$
$\mathrm{O}(2)-\mathrm{C}(21)$	$1.43(1)$		
$\mathrm{N}-\mathrm{Ni}-\mathrm{N}^{\prime}$	180.00	$\mathrm{~S}(1)-\mathrm{Ni}-\mathrm{S}(2)$	$81.53(8)$
$\mathrm{N}-\mathrm{Ni}-\mathrm{S}(1)$	$89.9(1)$	$\mathrm{N}-\mathrm{Ni}-\mathrm{S}(2)$	$89.5(1)$
$\mathrm{S}(1)-\mathrm{P}-\mathrm{S}(2)$	$111.0(1)$	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$94.9(2)$
	Symmetry code: (i) $1-x,-y,-z$.		

Data collection was performed using CAD-4 Software (EnrafNonius, 1989). The ω-scan width was $(0.45+0.35 \tan \theta)^{\circ}$ and the scan speed was $1-5.46^{\circ} \mathrm{min}^{-1}$. The structure was solved by direct methods and difference syntheses, and refined with anisotropic displacement parameters for all non-H atoms except C24, which was found to be disordered. Calculations were performed on a VAX3100 computer using the TEXSAN (Molecular Structure Corporation, 1985) program package. Molecular graphics were prepared using ORTEPII (Johnson, 1976).

This work was supported by a grant for a Major Project from the State Science and Technology Commission, and the National Science Foundation of China, as well as the State Key Laboratory of Tribology of Tsinghua University.

Lists of structure factors, anisotropic displacement parameters, \mathbf{H} atom coordinates, least-squares-planes data and complete geometry have been deposited with the IUCr (Reference: CR1171). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, S.-X., Lin, C.-C., Xu, Z., Yu, Y.-P. \& You, X.-Z. (1987). Chin. J. Org. Chem. pp. 369-373.

Liu, S.-X., Lin, C.-C., Yu, Y.-P., Zhu, D.-L., Xu, Z., Gou, S.-H. \& You, X.-Z. (1991). Acta Cryst. C47, 43-45.
Molecular Structure Corporation (1989). TEXSAN. TEXRAY Structure Analysis Package. Revised. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Ooi, S. \& Fernando, Q. (1967). Inorg. Chem. 6, 1558-1562.
Shiomi, M., Tokashiki, M., Tomizawa, H. \& Kuribayashi, T. (1989). Lubr. Sci. 1, 134-137.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
You, X.-Z., Xiong, R.-G., Dong, J.-X. \& Huang, X.-Y. (1994). Polyhedron, 13, 2763-2765.
You, X.-Z., Xu, Z., Xu, X., Lin, J.-H., Yu, Y.-P., Lin, C.-C. \& Liu, S.-X. (1991). Chin. Sci. Bull. 36, 1308-1311.

Acta Cryst. (1995). C51, 2265-2269

Two Cobaltacyclopentadiene Complexes and One Cyclobutadiene Complex

Toyoaki Fuitta, Hidehro Uekusa, Akira Ohkubo, Tadashi Shimura, Kunitsugu Aramaki, Hiroshi Nishihara and Shigeru Ohba*
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan

(Received 26 October 1993; accepted 9 May 1995)

Abstract

The structures of three cobalt complexes, [1,4-bis($1-$ propynyl)-2,3-dimethyl-1,3-butadiene-1,4-diyl](η^{5} cyclopentadienyl)(triphenylphosphine)cobalt, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left(\mathrm{C}_{12} \mathrm{H}_{12}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)$], (η^{5}-cyclopentadienyl)[2,4-diphenyl-1,3-bis(phenylethynyl)-1,3-butadiene-1,4-diyl](triphenylphosphine $)$ cobalt, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{32} \mathrm{H}_{20}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, and $\left\{\eta^{4}\right.$-1,3-bis (trimethylsilyl)-2,4-bis[4^{\prime}-(trimethylsilylethynyl) biphenyl-4-yl]cyclobutadiene $\}$ (η^{5}-cyclopentadienyl) cobalt, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{Si}_{4}\right)\right.$], have been determined by single-crystal X-ray diffraction.

Comment

Dialkynylcobaltacyclopentadiene complexes were obtained from the reaction of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2}$ with conjugated diacetylenes. In order to identify geometric isomers, X-ray structure analyses have been carried out. The syntheses and electrochemical properties of the complexes have been published elsewhere (Shimura et al., 1995).

(I) $\quad R_{1}=R_{4}=C \equiv C-M e, R_{2}=R_{3}=M e$
(II) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{Ph}$
(III) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{SiMe}_{3}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} \equiv \mathrm{C}$-SiMe 3
(IV) $R_{1}=R_{2}=R_{3}=R_{4}=C_{6} F_{5}$ (Gastinger et al., 1976)

Complex (I), [1,4-bis(1-propynyl)-2,3-dimethyl-1,3-butadiene-1,4-diyl]((%5Ceta%5E%7B5%7D)-cyclopentadienyl)(triphenylphosphine) cobalt, has chemical mirror symmetry through the $\mathrm{Co}-\mathrm{P}$ axis and the midpoint of $\mathrm{C} 2-\mathrm{C} 3$. The two - $\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}$ groups are bonded to C 1 and C 4 of the metallacycle.

[^0]: Lists of structure factors, torsion angles, least-squares-planes data anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving H atoms have been deposited with the IUCr (Reference: AB1261). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England

